
Smart Contract Security Audit Report

Project Name: Bitana (Bita)

Contract Address: 0xdc7daaa6a8feb7358add5adc64a5299e8f8865eb

Network: BNB Smart Chain (BEP-20)

Date: 2025-08-19

1. Introduction

This report provides an initial security analysis of the Bitana (Bita) BEP-20 token smart contract. The purpose is

to identify any potential security risks, logical vulnerabilities, and best practices adherence based on the

publicly available Solidity code on BscScan.

2. Contract Overview

The contract implements the BEP-20 standard, including the core functions:

 totalSupply()

 balanceOf(address account)

 transfer(address recipient, uint256 amount)

 approve(address spender, uint256 amount)

 transferFrom(address sender, address recipient, uint256 amount)

The contract uses OpenZeppelin’s Context, IERC20, and Ownable interfaces, providing standard ERC-20

functionality with ownership controls.

3. Code Snippet Highlights

Ownership Management (Ownable.sol):

address private _owner;

modifier onlyOwner() {

 require(owner() == _msgSender(), "Ownable: caller is not the owner");

 _;

}

function transferOwnership(address newOwner) public onlyOwner {

 require(newOwner != address(0), "Ownable: new owner is the zero address");

 _owner = newOwner;

}

 Ensures only the owner can execute sensitive functions.

 Ownership can be transferred, which requires careful management.

Transfer Function (BEP20.sol):

function transfer(address recipient, uint256 amount) public override returns (bool) {

 _transfer(_msgSender(), recipient, amount);

 return true;

}

function _transfer(address sender, address recipient, uint256 amount) internal {

 require(sender != address(0), "BEP20: transfer from the zero address");

 require(recipient != address(0), "BEP20: transfer to the zero address");

 require(_balances[sender] >= amount, "BEP20: transfer amount exceeds balance");

 _balances[sender] = _balances[sender] - amount;

 _balances[recipient] = _balances[recipient] + amount;

 emit Transfer(sender, recipient, amount);

}

4. Security Review

4.1 Ownership and Access Control

 The contract uses Ownable for restricting sensitive operations.

 Recommendation: Consider using a multi-signature wallet or timelocks for ownership transfer to

reduce risk of compromise.

4.2 Input Validation

 All transfer functions check for zero addresses and sufficient balances.

 SafeMath is used implicitly in Solidity 0.8+ to prevent overflows.

4.3 Potential Risks

 No minting or burning functions found, so total supply is fixed after deployment — reduces risk of

inflation attacks.

 Ownership transfer function is present; if compromised, it can lead to takeover of contract controls.

 No pause or emergency stop functions exist; adding these can improve security in case of unexpected

bugs.

